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1. INTRODUCTION

Structural dynamacists generally pay more attention to the natural frequencies (poles) than
the antiresonances (zeros) of vibrating systems, which is in one sense unfortunate because
the special characteristic of the zeros is that they de"ne the frequencies at which vibrations
vanish. This information is clearly valuable in many engineering applications. In fact, the
dynamic vibration absorber is a device for the assignment of point-receptance zeros, which
lie on the imaginary axis of the eigenvalue plane for the classical undamped case and
become complex when the absorber includes a damper. The zeros of di!erent point and
cross receptances generally occur at di!erent frequencies. In design, there might be the
requirement to assign a zero to a particular spatial location at the frequency of a sinusoidal
excitation applied at a di!erent co-ordinate. This means that we want to specify a zero of
a particular cross receptance. Although it is an important issue, we will not dwell on the
problem of assigning zeros in this letter. Instead, we report on numerical results which
provide new understanding for the interpretation of measured cross receptances.

The zeros of point and cross receptances can be investigated by solving symmetric and
asymmetric generalized eigenvalue problems respectively [1]. In numerical studies, the
matrices are formed from the sti!ness and mass (K, M) matrices of the system by deleting
a single row and column. When the row and column have the same index, the resulting
matrix system will be symmetric and its eigenvalues will be the zeros of a point receptance,
which (by the interlacing rules of real symmetric matrices) will lie in an uninterrupted
sequence between the system poles. When the deleted rows and columns have di!erent
indices the resulting matrices will be asymmetric, interlacing rules will not apply, the
eigenvalues may become complex and the system of matrices may be defective. Numerical
examples of complex zeros and repeated zeros due to defective matrix-systems are presented
and explained.

2. THEORY

We write the system sti!ness and mass matrices, K"KT* (or'0) and M"MT'0, in
the form,
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by the rearrangement of rows and columns.
K

pq
is the matrix formed from K by deleting the pth row and qth column, k

pq
is the pqth

term of K, kT
p
is the pth row of K (except for k

pq
) and k

q
is the qth column of K (except for k

pq
).

Similar de"nitions apply to the terms in the partitioned mass matrix. When qOp then
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so that the eigenvalues jM
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, i"1,2, n!1,
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may be complex or defective.
Defective eigenvalues occur whenever the algebraic multiplicity, (g#1), of the repeated

eigenvalues jM
j
, jM

j`1
,2, jM

j`g exceeds the geometric multiplicity de"ned by the dimension of
the subspace spanned by the vectors w

j
, w

j`1
, w

j`g [2]. It can be shown [1] that the
eigenvalues jM

i
are the zeros of the cross receptance h

pq
"h

qp
in linear dynamic systems.

3. COMPLEX ZEROS

Since the matrices K
pq

and M
pq

are real, those eigenvalues that are complex will occur in
conjugate pairs. In fact it is the roots of the jM

i
, i"1,2, n!1, that determine the frequency

and damping of the zeros and can be plotted on the complex eigenvalue plane. The square
roots of the complex jM

i
and its complex conjugate jM *

i
from a set of two pairs of complex

conjugate zeros on a circle centred at the origin of the complex plane. Thus, four zeros are
de"ned according to the di!erent combinations of $signs,
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and p and uN take their usual meanings. It is straightforward to show that the phase shift due
to the two left-hand side eigenvalues is tan~1(!2pu/(!u2#(p2#uN 2))), and due to the
two right-hand side eigenvalues is tan~1 (2pu/(!u2#(p2#uN 2))) . The phase shift due to
(z

1
, z*

1
) is exactly opposite to the phase shift introduced by (z

2
, z*

2
). Consequently, in an

undamped K, M system no phase change is observed in the cross receptances at the
frequency of a complex zero. The phase shifts are all 1803 changes at the poles and the zeros
on the imaginary axis.

3.1. NUMERICAL EXAMPLE

The following system is considered:

K"

2)85 !1 !0)5 !0)2 !0)1 !0)05

!1 3)3 !1 !0)5 !0)2 !0)1

!0)5 !1 3)4 !1 !0)5 !0)2

!0)2 !0)5 !1 3)4 !1 !0)5

!0)1 !0)2 !0)5 !1 3)3 !1

!0)05 !0)1 !0)2 !0)5 !1 2)85

,
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where,
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The zeros are given in Table 1 and the receptance h
16

is shown in Figure 1. The two purely
imaginary zeros between 2 and 2)5 rad/s are &sharp' whereas the complex zeros at
1)846 rad/s appear to be less well de"ned in the "gure. Figure 2 shows more details in the
frequency range of the complex zeros. It is clear that the vibration is not completely
eliminated by the complex zeros and no phase change can be detected at the 1)846 rad/s
frequency.

4. DEFECTIVE ZEROS

The occurrence of repeated zeros was considered by Mottershead et al. [3] but the
possibility of a defective system (K

pq
, M

pq
) was not included. To correct the omission in the
TABLE 1

Complex zeros (rad/s)

Real Imaginary

z
1
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2
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z
3
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2)362

z
5
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5
121)2



Figure 1. Frequency response h
16

.

Figure 2. Frequency response h
16

showing details of complex zeros: (a) Amplitude, (b) Phase.
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previous paper, we begin by considering the two systems (K
qq

, M
qq

) and (K
pq

, M
pq

) and
without loss of generality set p"2, q"1. The following eigenvalue equations can be
written:
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If jM
s
"jM

t
the two matrices are identical except for the "rst rows. Furthermore, if jM

s
and jM

t
are

both distinct and a pole-zero cancellation j
p
"jM

s
takes place [3, 4], then w

s
"w3

t
.

In the case when there are repeated zeros of multiplicity (g#1) in the cross receptances
and dim (S)"(g#1), S"span (w3

t
, w3

t`1
,2, w3

t`g) (so that the eigenvalues are not
defective), then it is possible to form eigenvectors of the point-receptance zeros so that,
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1
) w

i
"0, i"s, s#1,2, s#g, (6)
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i
, i"1,2, g, (7)

where a
i
is a particular vector of scaling factors. The repeated zeros j1

s
, j1

s`1
,2, j1

s`g all
cancel with poles of the system. If there are more point-receptance zeros than
cross-receptance zeros, then a similar argument can be used to show that all the zeros of the
cross receptance and all but one zero of the point receptance will cancel with poles. In any
case, the poles and zeros will cancel to leave a single pole, a single zero or complete
cancellation in the point receptance and all cross receptances that include the same index.
Equation (6) is considered in more detail in Appendix A.

When dim (S)((g#1) so that the cross-receptance zeros are defective, then the
number of uncancelled zeros may be greater than one. Hence, there can be uncancelled
coincident zeros in cross-receptance measurements, the multiplicity of which will not exceed
by more than one the di!erence between the algebraic and geometric multiplicity of the
repeated zeros. Coincident zeros without cancellation by poles cannot occur in the point
receptances since the point-receptance zeros cannot be defective (the matrices K

qq
, M

qq
are

symmetric).

4.1. NUMERICAL EXAMPLE

We consider the system de"ned by
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so that

K
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2 !1

!1 3 !1

!1 2 !1

!1 !1

1

M
45
"diag (1 1 1 0 1)

and the eigenvalues jM
i
(K

45
, M

45
), i"1,2, s, determine the zeros of the cross receptance

h
45
"h

54
. The poles of the system are given together with the zeros of h

44
, h

55
and h

45
in

Table 2. The eigenvectors of (K
45

, M
45

) are shown in Table 3, from which it can be observed
that the geometric multiplicity of the two repeated cross-receptance zeros is one. Therefore,
the system (K

45
, M

45
) (and its eigenvalues) are defective. The frequency response h

45
is

given in Figure 3. It is clear that no phase change occurs at the frequency of the repeated
zeros (1 rad/s) which is consistent with there being two coincident zeros present in the
receptance.

Another interesting result can be obtained by an inspection of Table 2 and the
eigenvectors and left-eigenvectors of the zeros. We observe from the table that zeros occur
together in the point and cross receptances h

44
and h

45
at 1)414 and 2 rad/s without

cancellation with a pole. The coincident frequencies occur because w
s
"w3

t
(both have zero

terms at the fourth coordinate), but the zeros are distinct and w
s
On3

t
which means that

a pole is prohibited and cancellation cannot take place.
TABLE 2

Poles and zeros

Poles (rad/s) Zeros (rad/s)

h
44

h
55

h
45

0)684 0)765 0)898 1
0)911 1 1 1
1)286 1)414 1)306 1)414
1)969 1)848 1)815 2
2)117 2 2)048 R

TABLE 3

Eigenvectors of (K
45

M
45

)

w3
1

w3
2

w3
3

w3
4

w3
5

!0)5774 0)5774 0)7071 0)4082 0
!0)5774 0)5774 !0)0000 !0)8165 0
!0)5774 0)5774 !0)7071 0)4082 0

0 0 0 0 1)0000
0 0 0 0 0



Figure 3. Frequency response h
45

: (a) Amplitude, (b) Phase.
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5. CONCLUSIONS

Complex and defective zeros can occur in cross receptance measurements. The complex
zeros always occur in sets of two pairs of complex conjugates so that they are not detectable
by a phase change. When complex zeros are present, the vibration is not completely
eliminated at the frequency of those zeros. Repeated defective zeros may appear in cross
receptances without cancellation by a pole. The number of uncancelled repeated zeros will
not exceed by more than one the di!erence between the algebraic and geometric multiplicity
of the repeated eigenvalues.
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APPENDIX A: REPEATED ZEROS

We consider the rearranged sti!ness and mass matrices as in equations (1) and (2), and
note that the system (K

pq
, M

pq
) is symmetric except for the qth row and pth column. Thus, if

the qth row and pth column were deleted the result would be a symmetric (n!2)](n!2)
system: this is a special feature of the zeros eigenvalue problem of the cross receptances.
Now let (K

pq
, M

pq
) have repeated eigenvalues j1

i
(i"t, t#1,2, t#g), eigenvectors w3

i
and left eigenvectors n3

i
. Generally the eigenvalues, eigenvectors and left eigenvectors will be

complex. However, if the terms tI
pi
"mI

qi
"0 then w3

i
"n3

i
since both are eigenvectors of the

symmetric (n!2)](n!2) system and will contain entirely real numbers. Of course, the
eigenvalues will also be real in that case.

If the cross-receptance zeros are non-defective, then it is clear that g eigenvectors,
w

s`i~1
(i"1,2, g), of the point receptance zeros can be formed as in equation (7) so that

t
p,s`i~1

"0. Likewise vectors can be formed from the left eigenvectors of the matrix in
equation (5) with the same constraint on the qth term, and jM

t
"jM

s
. In both the cases, the

same eigenvectors of the symmetric (n!2)](n!2) submatrix may be obtained. This
shows that the "rst row of equation (4) is satis"ed (the "rst row of the matrix in equation (4)
is identically the "rst column of the matrix in equation (5)). The "rst row of the matrix in
equation (5) is (k

1
!jM

s
m

1
) when jM

s
"jM

t
, so that equation (6) is satis"ed by the constrained

eigenvector w
s`i~1

.
Repeated poles of multiplicity g, at the same frequency, having eigenvectors (0, wT

s`i~1
)T,

will cancel the repeated point receptance zeros. The eigenvectors of the poles have vibration
nodes at both the pth and qth coordinates.
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